A biomechanical analysis of applied pinch force during periodontal scaling.
نویسندگان
چکیده
One of the factors associated with the high prevalence of upper extremity musculoskeletal disorders, such as carpal tunnel syndrome, among dental practitioners is the repeated high pinch force applied during periodontal scaling. The goal of this study was to determine the relationship between the pinch force applied during periodontal scaling and the forces generated at the tip of the tool. A linear biomechanical model that incorporated tool reaction forces and a calculated safety margin was created to predict the pinch force applied by experienced and inexperienced dentists during periodontal scaling. Six dentists and six dental students used an instrumented scaling tool while performing periodontal scaling on patients. Thumb pinch force was measured by a pressure sensor, while the forces developed at the instrument tip were measured by a six-axis load cell. A biomechanical model was used to calculate a safety factor and to predict the applied pinch force. For experienced dentists, the model was moderately successful in predicting pinch force (R(2)=0.59). For inexperienced dentists, the model failed to predict peak pinch force (R(2)=0.01). The mean safety margin was higher for inexperienced (4.88+/-1.58) than experienced (3.35+/-0.55) dentists, suggesting that students apply excessive force during scaling.
منابع مشابه
Pinch forces and instrument tip forces during periodontal scaling.
BACKGROUND The prevalence of upper-extremity musculoskeletal disorders, such as tendinitis, is elevated among dental practitioners. An important risk factor for these disorders is forceful pinching; however, the pinch forces and instrument forces during scaling are unknown. METHODS Six dentists and six senior-year dental students were recruited to use an instrumented periodontal scaler to per...
متن کاملThe effect of tool handle shape on hand muscle load and pinch force in a simulated dental scaling task.
Work-related upper extremity musculoskeletal disorders, including carpal tunnel syndrome, are prevalent among dentists and dental hygienists. An important risk factor for developing these disorders is forceful pinching which occurs during periodontal work such as dental scaling. Ergonomically designed dental scaling instruments may help reduce the prevalence of carpal tunnel syndrome among dent...
متن کاملBiomechanical interaction between the transverse carpal ligament and the thenar muscles.
The transverse carpal ligament (TCL) serves as the origin of the thenar muscles and is integral to thenar muscle contraction anatomically and biomechanically. TCL hypertrophy has been observed in patients with carpal tunnel syndrome and is potentially caused by repetitive hand use. The purpose of this study was to investigate the biomechanical interaction between the TCL and the thenar muscles....
متن کاملUse of intrinsic thumb muscles may help to improve lateral pinch function restored by tendon transfer.
BACKGROUND For surgical reconstruction of lateral pinch following tetraplegia, the function of the paralyzed flexor pollicis longus is commonly restored. The purpose of this study was to investigate if one of the intrinsic muscles could generate a more suitably directed thumb-tip force during lateral pinch than that of flexor pollicis longus. METHODS Endpoint force resulting from 10 N applied...
متن کاملA simulation analysis of the combined effects of muscle strength and surgical tensioning on lateral pinch force following brachioradialis to flexor pollicis longus transfer.
Biomechanical simulations of tendon transfers performed following tetraplegia suggest that surgical tensioning influences clinical outcomes. However, previous studies have focused on the biomechanical properties of only the transferred muscle. We developed simulations of the tetraplegic upper limb following transfer of the brachioradialis (BR) to the flexor pollicis longus (FPL) to examine the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of biomechanics
دوره 40 9 شماره
صفحات -
تاریخ انتشار 2007